Tuesday, July 22, 2014

Microsoft Patents "Wearable Behavior-Based Vision System"

This has been getting some buzz on message boards, but it appears that this patent is more about how to use a head mounted display, than a patent for a head mounted display.

Good news for sure that a lot of thought is going into how to use these displays.



Pub. No.:  WO/2014/110469  International Application No.:  PCT/US2014/011183
Publication Date:17.07.2014International Filing Date:11.01.2014
IPC:
G06F 3/01 (2006.01), G01C 23/00 (2006.01), G02B 27/01 (2006.01)
Applicants:MICROSOFT CORPORATION [US/US]; One Microsoft Way Redmond, WA 98052-6399 (US)
Inventors:LAMB, Mathew, J.; (US).
KIPMAN, Alex, Aben-athar; (US)

Patent Description

WEARABLE BEHAVIOR-BASED VISION SYSTEM

BACKGROUND

[0001] Mixed reality is a technology that allows virtual imagery to be mixed with a real world physical environment in a display. Systems for mixed reality may include, for example, see through head mounted displays or smart phones with built in cameras. Such systems typically include processing units which provide the imagery under the control of one or more applications.

[0002] Behavioral based analysis has been utilized in robotics as a framework for programming the actions of control systems. Some behavioral models in behavioral-robotics use layered sets of rules for object, with base-layer behaviors such as avoid-collision being the most basic. Behaviors are focused from the perspective of the actor or robot, and elemental behaviors used to produce advanced control systems.
[0003] In behavior-based system, the robot controller is organized as a collection of modules, called behaviors, that receive inputs from sensors and/or other behaviors, process the input, and send outputs to actuators and/or other behaviors. Each behavior generally serves some independent function, such as avoiding obstacles or homing to a goal location. All behaviors in a controller are executed in parallel, simultaneously receiving inputs and producing outputs.

SUMMARY

[0004] Technology is described to provide a behavior-based vision system in a see-through head mounted display device. A see through display apparatus includes a see-through, head mounted display and sensors on the display that detects audible and visual data in a field of view of the apparatus. A processor cooperates with the display to provide information to a wearer of the device using a behavior-based real object mapping system. At least a global and egocentric behavioral zone relative to the apparatus are established, and real objects assigned behaviors which are mapped to the respective zones occupied by the object. The behaviors assigned to the objects can be used by applications which provide services to the wearer, using the behaviors as the foundation for evaluation of the type of feedback to provide in the apparatus.

[0005] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

[0006 - 00057]

[0058] There are different image generation technologies that can be used to implement microdisplay 120. For example, microdisplay 120 can be implemented using a transmissive projection technology where the light source is modulated by optically active material, backlit with white light. These technologies are usually implemented using LCD type displays with powerful backlights and high optical energy densities. Microdisplay 120 can
also be implemented using a reflective technology for which external light is reflected and modulated by an optically active material. The illumination is forward lit by either a white source or RGB source, depending on the technology. Digital light processing (DLP), liquid crystal on silicon (LCOS) and Mirasol® display technology from Qualcomm, Inc. are all examples of reflective technologies which are efficient as most energy is reflected away from the modulated structure and may be used in the system described herein. Additionally, microdisplay 120 can be implemented using an emissive technology where light is generated by the display. For example, a PicoP™ engine from Microvision, Inc. emits a laser signal with a micro mirror steering either onto a tiny screen that acts as a transmissive element or beamed directly into the eye (e.g., laser).

No comments:

Post a Comment